PL Series
 Power Supplies
 Service Manual

T
 \square
 i

Table of Contents

General 1
Specification 3
Installation 6
Functional Description - Main Outputs 9
Circuit Description - Main Outputs 10
Calibration - Main Outputs 12
Quad Mode Calibration 13
Quad Mode Triples 14
Funcitonal Description - 5V/7A Module (PL330 QMT) 14
Circuit Description - 5V/7A (Issue 2 PCBs and later) 14
Calibration - 5V/7A Module 17
Functional Description - 5V/4A Module (PL320QMT) 18
Circuit Description - 5V/4A 18
Calibration - 5V/4A 19
Circuit Description - 5V/1.5A (PL310QMT) 19
Parts List 20
Component Layouts \& Circuit Diagrams 38

General

Applicability of this Manual

This Service Manual is for the revised PL models introduced from mid-1991, with the exception of the PL-P 3Amp programmable models which are covered by a separate manual. The revised PLs differ substantially in their circuit configurations from their predecessors whilst functionally remaining very similar; the new models can, however, be very easily distinguished from the earlier series because they have a push-button current damping switch instead of a panelmounted rocker switch. The earlier PLs are covered by separate manuals for the manual and programmable versions.

Introduction

The PL series of power supplies are fully variable series regulated units incorporating separate digital meters for voltage and current. Separate voltage and current control circuits enable them to operate in constant voltage or constant current mode from 0 to 32 Volts at 0 to $1.1 \mathrm{Amps}, 2.1$ Amps or 3.1 Amps (0 to 15 Volts at 4 Amps - PL154); triple versions have additional 5 Volt logic supply outputs.

In addition to the AC input switch, there is a DC output switch. When this switch is 'off', the +ve output is disconnected and the current meter reads the value of the current control setting. The current meter decimal points are used to indicate the mode as follows:

Decimal points off
Decimal points on
Decimal points flashing

- output switch 'on', constant voltage operation, meter reading output current.
- output switch 'off', meter reading current limit setting
- output switch 'on' constant current operation, meter reading output current.

A damping switch is incorporated on the current meter. This provides a long time constant which averages out rapidly fluctuating load currents.

The input to the voltage control circuit and voltage meter are brought out to the front panel terminals labelled 'sense'. These are normally connected to the output terminals by shorting bars, but can be connected to the output at the load via separate leads in order to eliminate inaccuracies caused by lead resistances.
Quad Mode Dual (QMD) versions incorporate push button switches enabling Isolated, Parallel, Series, or Series Tracking operations to be selected. Quad Mode Triple (QMT) units are the same as the QMD supplies but have an additional higher current 5 V output intended for powering logic circuits. The current rating and sophistication of the logic output varies according to the model from 5 Volt fixed at 1.5 Amp maximum to 4-6 Volt variable with a $0.1-7$ Amp variable current limit.

General and Safety

This manual has been prepared to aid the experienced engineer in the maintenance and repair of PL Series power supplies. It should be used in conjunction with the owner's instruction manual. Recalibration or repair should only be attempted by skilled personnel in conjunction with high quality test equipment. If the user is in any doubt as to his competence to carry out the work, the supply should be returned to the manufacturer or their agent overseas for the work to be carried out.
When the power supply is connected to the AC line, terminals may be live, and the opening of covers or removal of parts (except those to which access can be gained by hand) is likely to expose live parts.
The supply shall be disconnected from all voltages sources before it is opened for any adjustment, replacement, maintenance or repair. Capacitors inside the supply may still be charged even if the supply has been disconnected from all voltage sources. Any adjustment, maintenance or repair of the opened supply under voltage shall be avoided as far as possible and, if inevitable, shall only be carried out by a skilled person who is aware of the hazard involved.

Dismantling the Equipment

The cover is removed by removing the two screws through the handle, and the remaining screws on each side and on the top.
The front panel may be disconnected from the chassis by removing the two front feet and the self-tapping screws directly between them. This allows the front panel to be laid forward giving improved access to the rear of the PCB. All preset adjustments are accessible through the PCB.
Should it be necessary to gain access to the front of the PCB, press in the retaining barb on each corner fixing pillar and lift off the pcb, having first removed the 3 control knobs.

Specification

Main Output(s)

Output Range:

Output Voltage Setting:

Output Current Setting:
Output Mode:

Configuration Selection: (QMD and QMT only)
Output Switch:

Output Terminals:
Output Impedance:
Constant Voltage:
Constant Current:
Output Protection:
Load Regulation:
Line Regulation:
Remote Sense:
Ripple and Noise:
Transient Response:
Temperature Coefficient:
Meter Type:

Meter Resolution:
Voltage:
Current:
Meter Accuracy:
Voltage:
Current:
Current Meter Damping:

0-32 Volts nominal (0-15.5V PL154)
0-1.1A nominal (PL310); 0-2.1A nominal (PL320);
0-3.1A nominal (PL330); 0-4A (PL154)
By coarse and fine controls; resolution better than 5 mV across the range.
By single logarithmic control.
The power supply operates in constant current or constant voltage modes with automatic cross-over. Decimal points flash to indicate constant current mode.
Isolated, True parallel, Series, or Series Tracking via front panel switches.

Isolates the output and permits voltage and current limits to be set up before connecting the load.
4 mm terminals on 19 mm ($.75^{\prime \prime}$) spacing.

Typically $<5 \mathrm{mOhm}$ at 1 kHz
Typically 50kOhm with voltage limit at maximum
Up to maximum output voltage +20 Volts forward; diode clamped for reverse voltages and up to 3A reverse current.
$<0.01 \%$ of maximum output for 90% load change
$<0.01 \%$ of maximum output for 10% line voltage change
Eliminates up to 0.5 V drop per lead
Typically $<1 \mathrm{mV}$ rms
<20usec to within 50 mV of setting for 90% load change
Typically <100ppm/_o_C
Dual 3.75 digit (4095 count) with 12.5 mm (0.5 ") LEDS. Reading rate 4 per second.

10 mV over the entire range
1 mA over the entire range
0.1% of reading
0.3% of reading
Nominally 20 ms , switchable to 2 sec for averaging of rapidly varying loads.

Logic Output (PL330 QMT)

Output Voltage Range:
Output Current:
Output Switch:

Output Terminals:
Over-Voltage Protection:
Output Protection:

Load Regulation:
Line Regulation:
Remote Sense:
Ripple and Noise:
Transient Response:
Temperature Coefficient:
Meter Type:
Meter Resolution:
Voltage:
Current:
Meter Accuracy:

Logic Output (PL320 QMT)

Output Voltage Range:
Output Current:
Output Switch:
Output Terminals:
Over-Voltage Protection:
Output Protection:

Load Regulation:
Line Regulation:
Remote Sense:
Ripple and Noise:
Transient Response:
Temperature Coefficient:
Voltage Setting Accuracy:

4 to 6 Volts
0.1 to 7 Amps.

Electronic

4 mm terminals on $19 \mathrm{~mm}\left(.75^{\prime \prime}\right)$ spacing.
Above 7 Volts
Clamped by the over-voltage protection circuit for forward voltages over 7 Volts and up to 1 Amp forward current. Diode clamped for reverse voltages and up to 3 Amps reverse current.
$<0.01 \%$ of maximum output for 90% load change
$<0.01 \%$ of maximum output for 10% line voltage change
Eliminates up to 0.5 V drop per lead
Typically $<1 \mathrm{mV}$ rms
<20usec to within 50 mV of setting for 90% load change
Typically $<100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
3.75 digit (4095 count) with 12.5 mm (0.5 ") LEDs. Reading rate 4 per second.

10 mV
10 mA
0.5% of reading + 1 digit

4 to 6 Volts
0.1 to 4 Amps.

Electronic
4 mm terminals on 19 mm (.75") spacing.
Above 7 Volts
Clamped by the over-voltage protection circuit for forward voltages over 7 Volts and up to 1 Amp forward current. Diode clamped for reverse voltages and up to 3 Amps reverse current.
$<0.01 \%$ of maximum output for 90% load change
$<0.01 \%$ of maximum output for 10% line voltage change
Eliminates up to 0.5 V drop per lead
Typically $<1 \mathrm{mV}$ rms
<20usec to within 50 mV of setting for 90% load change
Typically $<100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Better than $\pm 0.1 \mathrm{~V}$

Logic Output (PL310QMT)

Output Voltage:
Output Current:
Output Terminal:
Output Protection:
Load Regulation:
Load Regulation:

GENERAL

Power Requirements:
Input Voltage:
Input Voltage Range:
Power Consumption:
30V/1A
$15 \mathrm{~V} / 4 \mathrm{~A}$ or $30 \mathrm{~V} / 2 \mathrm{~A}$
30V/3A
Environmental Operating Range:
Environmental Storage Range:
Weight:
30V/1A
$15 \mathrm{~V} / 4 \mathrm{~A}$ or $30 \mathrm{~V} / 2 \mathrm{~A}$
30V/3A
Size:

Electrical Safety:
EMC:

Fixed $5 \mathrm{~V} \pm 0.1 \mathrm{~V}$
0 to 1.5 Amps
4 mm terminals on 19 mm (0.75 ") spacing
Output will withstand up to 16 V forward voltage. Diode clamped for reverse voltages and up to 3 Amps reverse current.
$<0.3 \%$ for 50% load change
<0.1\% for 10\% line change

Internally set for $110,120,220$ or $240 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$ $\pm 10 \%$ of voltage setting

Single	Dual	Triple
75VA	150 VA	150 VA
150VA	300 VA	375 VA
250VA	500 VA	600 VA

$5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}, 20 \%$ to $80 \% \mathrm{RH}$
$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Single	Dual	Triple
4.0 kg	8.0 kg	8.5 kg
5.0 kg	9.5 kg	11.5 kg
6.0 kg	12.0 kg	15.5 kg

155 mm wide $\times 170 \mathrm{~mm}$ high $\times 265 / 300 \mathrm{~mm}$ deep (single)
350 mm wide $\times 170 \mathrm{~mm}$ high $\times 265 / 300 \mathrm{~mm}$ deep (dual)
425 mm wide $\times 170 \mathrm{~mm}$ high $\times 265 / 300 \mathrm{~mm}$ deep (triple)
Designed and manufactured to comply with IEC 348
Designed and manufactured to comply with EN50081-1/EN50082-1.

Installation

Mains Operating Voltage

Check that the operating voltage of the instrument shown on the rear panel is suitable for the local supply. Should it be necessary to change the operating voltage range proceed as follows:

1. Ensure that the instrument is disconnected from the AC supply.
2. Remove the screws holding the case upper and handle.
3. Lift off the case upper.
4. The transformer primary taps are clearly marked:
A 0-110-120
B 0-110-120

Rewire as follows:

240V operation:	Neutral (blue) wire to A0
	Link (red) wire from A120 to B0
	Live (brown) wire to B120
220V operation:	Neutral (blue) wire to A0 Link (red) wire from A110 to B0 Live (brown) wire to B110
	Neutral (blue) wire to A0
	Link (black) wire from A0 to B0
	Link (red) wire from A120 to B120
	Live (brown) wire to B120
110V operation: \quad	Neutral (blue) wire to A0
	Link (black) wire from A0 to B0
	Link (red) wire from A110 to B110
	Live (brown) wire to B110

Note: Units factory set to 220 or 240 V will have no black link wire - this must be provided when converting to $110 / 120 \mathrm{~V}$ operation. When converting a $110 / 120 \mathrm{~V}$ unit to $220 / 240 \mathrm{~V}$ the black link wire should be discarded.
5. Reassemble in the reverse order.
6. Change the fuse type if necessary.

Important Note: IEC 348 Safety Regulations state that the AC line voltage to which the apparatus is set must be clearly marked on the outside. If the line voltage setting is changed, it is imperative that the voltage marked on the label close to the power lead entry point is also changed.

Fuse

The AC fuse is located on the back panel. The correct fuse type is $20 \mathrm{~mm} \times 5 \mathrm{~mm} 250 \mathrm{~V}$ HBC timelag with the following rating:

Model	220/240V	110/120V
PL310/PL320/PL154 (single)	1AT	2AT
PL330 (single)	1.6 AT	3.15 AT
PL310QMD/PL320QMD/PL310QMT/PL320QMT	2AT	4 AT
PL330QMD	$3.15 A T$	$6.3 A T$
PL330QMT	$4 A T$	$8 A T$

Make sure that only fuses with the required rated current and of the specified type are used for replacement. The use of makeshift fuses and the short-circuiting of fuse holders is prohibited.

Mains Lead

When a three core mains lead with bare ends is provided this should be connected as follows:

BROWN	-	MAINS LIVE
BLUE	-	MAINS NEUTRAL
GREEN/YELLOW	-	EARTH

When fitting a fused plug a 5 amp fuse should be fitted inside the plug. As the colours of the wires in the mains lead of this apparatus may not correspond with the coloured markings identifying the terminals in your plug proceed as follows:

The wire which is coloured green-and-yellow must be connected to the terminal in the plug which is marked by the letter E or by the safety earth symbol or coloured green or green-and-yellow.

The wire which is coloured blue must be connected to the terminal which is marked with the letter N or coloured black.

The wire which is coloured brown must be connected to the terminal which is marked with the letter L or coloured red.

If the unit is to be connected to the main supply by fixed wiring, rather than via an AC line plug, then the protective earth (ground) wire in the 3 core mains lead shall be connected to a protective conductor before any other connection is made.

WARNING! THIS APPARATUS MUST BE EARTHED

Any interruption of the protective conductor inside or outside the apparatus or disconnection of the protective earth terminal is likely to make the apparatus dangerous. Intentional interruption is prohibited.

Block diagram - Main Outputs

Functional Description - Main Outputs

The relationship between the major circuit elements is shown in the block diagram opposite.
The transformer incorporates two secondary windings, one which produces the main supply powering the output, and another which produces an auxiliary supply powering the control and metering circuits.
The series regulator is placed in the positive output of the main supply, but because of the way in which the control and metering circuits operate, it is convenient to label the output of the series regulator as 0 volts, and to regard the negative side of the main supply as being the controlled output voltage (-V out).
The auxiliary supply provides stabilised symmetrical voltage outputs $\mathrm{V}+$ and V - with the common point connected to the +ve output.
The series regulator is controlled by the 'voltage control circuit' until the output current flowing reaches the current limit setting, upon which the 'current control circuit' takes over. The voltage control buffer amplifies and provides low output impedance from the voltage controls.
The input to the voltage control circuit is from the control buffer, or from the master output on the slave side of PLQMD/PLQMT units.

The 12 bit A to D measures output voltage and either preset current or output current selected by the multiplexer.
The micro-controller reads the output of the A to D and drives the appropriate display.

Circuit Description - Main Outputs

Refer to the appropriate schematic at the back of this manual.

Power Supply - Mains

This consists of a full wave bridge rectifier feeding the reservoir capacitor C31. The full load secondary winding voltage is 36 V rms giving approximately 55 volts off load and 40 V on full load (30V and 24V on PL154).

Power Supply - Auxiliary

This consists of twin full wave rectified supplies from a 21 V centre tapped winding. IC8 generates +5 V for the micro-Controller, display and A to D . Q7 and D 10 generate +7.5 V for the analogue section. D11 generates -5 V for the analogue section and A to D . 0 V of this supply is connected to the positive output at R51.

Voltage Control

IC7A buffers the voltage control pots and VR3 sets maximum output voltage of the unit. D6 is the reference which is nominally 2.45 V .
IC7B is a differential amplifier with a voltage gain of 13.3. For 30 V output this means the voltage at PJ2-8 will be 2.25 V and for 15 V output 1.125 V . VR9 trims differential gain and effects voltage regulation. This can be set more accurately by generating a few hundred millivolts between positive output and positive sense, see calibration section.

Current Control

IC7C is the error amplifier and compares the voltage on the wiper of VR5 with the voltage generated across the current sense resistor R51. When this limit is reached IC7C takes control changing the supply output from constant voltage to constant current. Current limit is indicated to the micro-controller by ILIMIT going high. The sense resistor is 100 milli-Ohm, therefore with the current limit set to 2A the voltage on the wiper of VR5 will be typically 188 mV when VR7 is set central. VR8 adjusts the output current to be the same as the preset current at low levels. VR4 trims maximum output current.

Series Regulator

Q1 and Q2 form a triple Darlington. On 2 Amp and 4 Amp versions Q2 is in parallel with Q3, Q4 and Q5. On 3 Amp versions Q2 is in parallel with Q3, Q4, Q5, Q8 and Q9. Q1 is a Darlington and is on a heatsink on the driver pcb .

A to D

IC2 is a 12 bit dual slope converter. Its reference is derived from D6 by R27 and R28 and is typically 180 mV . XL1 is either a 4 MHz crystal or ceramic resonator. The buffered oscillator output is also used by the microcontroller IC1. Analogue multiplexer IC3 selects measurement of output voltage, preset current or output current. R65 and C38 provide the current meter damping facility.

Microcontroller

The measurement system and display is controlled by a microcontroller IC1.
The two 4-digit LED displays are driven by IC1 via the segment latches IC4 and IC9 and the digit latch IC5. Digit current is provided by IC6 and individual segment current is limited to 50 mA by the resistors R10 and R17. The digit on-time rate is 2 ms and is controlled by IC1 which also provides the inter digit blanking to prevent ghosting segments.

The measurement of output values of voltage and current is performed by the 12 bit analog to digital converter IC2. The measurement rate is controlled by the 4.0 MHz ceramic resonator XL1 connected between pins 22 and 23 and the buffered version of this 4 MHz signal at pin 25 is used as the clock to the microcontroller IC1. The ADC, IC2, is a dual slope converter and provides a little over 8 readings per second when clocked at 4 MHz . The ADC is run in continuous mode and
the status signal on pin 2 is read by the microcontroller every 6 ms . When a reading is ready the microcontroller reads the 12 bit binary value and then converts it to 7 segment BCD and stores it ready to be sent to the display. After each reading the microcontroller switches the input multiplexer IC3 to the next required input. In this way it is possible to read and display any of the following:

Output Volts (equal to Preset Volts when the output switch is off) Output Current
Preset Current

The multiplexer is controlled by IC1. The decision on what to measure and display at any time is taken by the microcontroller and in order to do this correctly a number of status signals and switches are monitored on a regular basis. These are:

ILIMIT	true if in current limit
OPON	the output on/off switch signal

These signals may be read by the microcontroller as required.

Service Notes

On Issue 3 and earlier main pcbs the current damping was provided by a digital filter in the microcontroller program and R65 and C38 were not fitted. Also if jitter is experienced on the meters near full scale, this can be overcome by increasing C 1 to 330 n . If the integrator capacitor C 4 has high dielectric absorption this will cause non zeroing of the current meter; this can be overcome by simply replacing it even with the same type as the yield is very good. On later pcbs more space has been provided to allow the larger pitch polypropylene type to be used.
Poor regulation can be caused by incorrect adjustment of the differential gain or the output is oscillating.

Quad Mode Dual Switchbank Assembly

The Quad Mode Dual units have a bank of four switches which allow four modes of operation to be obtained.
Isolated: SW1 (Release) depressed. All interconnections between the two units is removed.
Parallel: SW2 depressed. The Slave unit pass transistors are driven from Q1 on the Master PCB, and their output is combined with that of the Master unit, thus doubling its current capability. VR5 on the Master unit is disconnected from R47 and connected to a network generating twice the control voltage. The slave unit becomes inoperative.
Series: SW2 depressed. The Slave unit positive terminal is connected to the Master unit negative terminal.
Tracking: SW4 depressed. As for Series, but additionally R36 on the +ve input to the Slave unit voltage control op-amp IC7B is disconnected from IC7A and is instead connected to a potential divider connected between Master unit +ve output and Slave unit -ve output. This maintains the voltageage at the Slave +ve output (and hence the Master -ve output) equal to $1 / 2$ of the total output voltage, thus producing tracking supplies of $\pm 30 \mathrm{~V}$ controlled from VR1 and VR2 on the Master unit. VR1 and VR2 on the Slave unit become inoperative.

PL330QMD Master

The main pcb on the master side on these instruments has some extra circuitry which allows current measurement above 4 amps and is only active when parallel mode is selected, QMPAR going low. IC10 halves the reference input to the A to D and selects VOL02 to give the correct output voltage readings. The current readings only read half and the microcontroller multiplies the answer by 2 before driving the display. This results in a resolution of 2 mA and not 10 mA which would be the case if a divide by 10 was used. See calibration section for correct adjustment of VR10 and VR11.

Calibration - Main Outputs

Equipment Required

A 5.5 digit multimeter with better than 0.05% accuracy on voltage and better than 0.1% accuracy on current or use a precision current shunt.
A small switch, 18 K resistor and a diode.

Preparation

Preset adjustments are accessible from both sides of the main pcb, their idents are also marked on both sides of the pcb.
Take great care not to touch the mains connections on the transformers during adjustment. Use an insulated trim tool. Allow five minutes warm-up before proceeding.

Calibration

To avoid errors when making voltage measurements the DVM must be connected directly to the sense terminals.

Voltage - Differential Gain

Remove the link between + O/P and + sense only and fit a diode, cathode to + sense and anode to + O/P. Connect the small switch across the diode. Connect the 18 K resistor between - O/P and + sense. Connect the DVM set to 20 V range to the sense terminals.
Close the switch
Set the DC output switch on
Set the output voltage to approximately 14 V
Note the reading
Open the switch and adjust VR9 for the same reading $+/-0.5 \mathrm{mV}$
Close and open the switch and check the reading

Voltage - Output and meter

Remove the switch and 18 K resistor and refit the link between $+\mathrm{O} / \mathrm{P}$ and + sense.
Set coarse and fine controls to maximum and adjust VR3 to 32.1 V or 15.6 on PL154 on the external DVM.
Adjust VR6 so the internal meter reads the same as the DVM.

Current

Set output switch to OFF
Set the current limit control for a reading of 10 mA
Set output switch to ON ON and short the output terminals
Adjust VR8 for a reading of 10 mA
Remove the short and connect an ammeter between the output terminals.
Set current limit to approximately:
900 mA - PL310
1800mA - PL320
2700mA - PL330
3600mA - PL154
and adjust VR7 so that the internal and external ammeters read the same.

Set current limit to maximum, output off and adjust VR4 for:

$$
\begin{aligned}
& 1100 \mathrm{~mA} \text { - PL310 } \\
& 2100 \mathrm{~mA} \text { - PL320 } \\
& 3100 \mathrm{~mA} \text { - PL330 } \\
& 4050 \mathrm{~mA} \text { - PL154 }
\end{aligned}
$$

Quad Mode Calibration

The above calibration must be carried out first.

i) PL310QMD/QMT and PL320QMD/QMT $]^{7}$

Select parallel mode, output switches OFF
Master current limit to maximum
Adjust VR2 on switchbank pcb for
2100mA - PL310QMD/QMT
4050mA - PL320QMD
on the master ammeter
Select tracking mode, output switches ON
Set master output voltage to approximately 30 V
Adjust VR1 on switchbank pcb so that the above voltmeter reads the same as the master voltmeter.

ii) PL330QMD/QMT

Select parallel mode, output switches OFF
Set master current limit to approximately 5A

Master output switch ON

Connect ammeter between the master output terminals
Adjust VR10 on the master main pcb for the same reading on the internal and external ammeters.
Remove external ammeter and connect the DVM to the master sense terminals.
Set master coarse voltage control to maximum.
Adjust VR11 on the master main pcb for the same reading on the internal and external voltmeters.
Note: In parallel mode, VR10 affects both the voltmeter and ammeter calibration; VR11 affects only the voltmeter.
Output switches OFF
Master current limit to maximum
Adjust VR2 on the switchbank pcb for 6100 mA on the master ammeter
Select tracking mode, output switches ON
Set master output voltage to approximately 30 V
Adjust VR1 on switchbank pcb so that the slave voltmeter reads the same as the master voltmeter.

Quad Mode Triples

Funcitonal Description - 5V/7A Module (PL330 QMT)

The relationship between the major circuit elements is shown in the block diagram.
The transformer incorporates two secondary windings, one which produces the main supply powering the output, and another which produces an auxiliary supply powering the control and metering circuits.
The series regulator is placed in the positive output of the main supply, but because of the way in which the control and metering circuits operate, it is convenient to label the output of the series regulator as 0 volts, and to regard the negative side of the main supply as being the controlled output voltage (-V out).
The auxiliary supply provides stabilised symmetrical voltage outputs $\mathrm{V}+$ and V - with the common point connected to the +ve output.
The series regulator is controlled by the 'voltage control circuit' until the output current flowing reaches the current limit setting, upon which the 'current control circuit' takes over. The voltage control buffer amplifies and provides low output impedance from the voltage controls.
The 12 bit A to D measures output voltage with the output switch off and output current with the output switch on selected by the multiplexer.

The micro-controller reads the output of the A to D and drives the display.

Circuit Description-5V/7A (Issue 2 PCBs and later)

Power Supply - Mains

This consists of a full wave bridge rectifier feeding the reservoir capacitor C30. The full load secondary winding voltage is 11 V rms giving approximately 15 volts off load and 12 V on full load.

Power Supply - Auxiliary

This consists of twin full wave rectified supplies from a 21 V centre tapped winding.
IC8 generates +5 V for the micro-Controller, display and A to D . Q7 and D 10 generate +7.5 V for the analogue section.
D11 generates -5 V for the analogue section and A to D .
0 V of this supply is connected to the positive output at R62.

Voltage Control

IC7A buffers the voltage control pot and VR7 sets maximum output voltage of the unit. D9 is the reference which is nominally 2.45 V .

Block Diagram - 5V/7A Output (Issue 2 pcb onwards)

IC7B is a differential amplifier with a voltage gain of 13.3. For 6 V output this means the voltage at IC7A will be 450 mV . VR4 trims differential gain and effects voltage regulation. This can be set more accurately by generating a few hundred millivolts between positive output and positive sense, see calibration section.

Current Control

IC9A is the error amplifier and compares the voltage on the wiper of VR3 with the voltage generated across the current sense resistor R62. When this limit is reached IC3A takes control. Current limit is indicated to the micro-controller by ILIMIT going high. The sense resistor is 50 milli-Ohm, therefore with the current limit set to 7A the voltage on the wiper of VR3 will be typically 330 mV when VR5 is set central.

To limit power dissipation in the series regulator the power supply has foldback current limiting. When the power supply enters current limit the microcontroller also monitors the output voltage, and if this falls below 3.5 V IC6B is switched from VR2 to a simple 3 bit DAC so that the microcontroller can take control of the current limit and reduce it as the output voltage falls.

Series Regulator

Q5, Q2 and Q3 form a triple Darlington. When the output current reaches 3 Amps, Q8 starts conducting.

Over Voltage Protection

When the voltage on the output terminals exceeds 7V, SCR1 is fired crowbaring the output. Current flowing through D6 is detected by IC9B which drives the trip line high informing the microcontroller of the trip condition. The microcontroller then turns the series regulator off via Q4.

A to D

IC2 is a 12 bit dual slope converter. Its reference is derived from D9 by R29 and R30 and is typically 180 mV . XL1 is either a 4 MHz crystal or ceramic resonator. The buffered oscillator output is also used by the microcontroller IC1. Analogue multiplexer IC3 selects measurement of preset voltage or output current.

Microcontroller

The measurement system and display is controlled by a microcontroller IC1.
The 4-digit LED display is driven by IC1 via the segment latch IC4 and the digit latch IC5. Digit current is provided by IC3 and individual segment current is limited to 25 mA by the resistors R10 and R17. The digit multiplex rate is 2 ms and is controlled by IC1 which also provides the inter digit blanking to prevent ghosting segments.

The measurement of output values of voltage and current is performed by the 12 bit analog to digital converter IC2. The measurement rate is controlled by the 4.0 MHz ceramic resonator XL1 connected between pins 22 and 23 and the buffered version of this 4 MHz signal at pin 25 is used as the clock to the microcontroller IC1. The ADC, IC2, is a dual slope converter and provides a little over 8 readings per second when clocked at 4 MHz . The ADC is run in continuous mode and the status signal on pin 2 is read by the microcontroller every 6 ms . When a reading is ready the microcontroller reads the 12 bit binary value and then converts it to 7 segment BCD and stores it ready to be sent to the display.
The output is electronically switched. The output from the unit bypasses the output switch (links) and the OPON signal drives Q4 via inverter Q5. When OPON is low, Q4 is on and removes the drive to the pass transistors. OPON also drives the multiplexer IC10 which switches to Vp when OPON is low.

Calibration - 5V/7A Module

Equipment Required

A 5.5 digit multimeter with better than 0.1% accuracy on voltage and better than 0.2% accuracy on current or use a precision current shunt.
A small switch, 560 Ohm resistor and a diode.

Preparation

Preset adjustments are located on both the main and driver pcbs. Presets are accessible from both sides of the main pcb.

Take great care not to touch the mains connections on the transformers during adjustment. Use an insulated trim tool. Allow five minutes warm-up before proceeding.

Calibration

To avoid errors when making voltage measurements the DVM must be connected directly to the sense terminals.

Voltage - Differential Gain

Remove the link between + O/P and + sense only and fit a diode, cathode to + sense and anode to $+\mathrm{O} / \mathrm{P}$. Connect the small switch across the diode. Connect the 560 Ohm resistor between $-\mathrm{O} / \mathrm{P}$ and + sense. Connect the DVM set to 20 V range to the sense terminals.
Close the switch.
Set the DC output switch ON.
Set the output voltage to approximately 5 V .
Note the reading
Open the switch and adjust VR4 on the main pcb for the same reading $+/-0.5 \mathrm{mV}$.
Close and open the switch and check the reading.

Voltage - Output and Meter

Remove the switch and resistor and refit the link between $+\mathrm{O} / \mathrm{P}$ and + sense.
Set the voltage control to maximum and adjust VR7 for 6.0 V to 6.05 V on the external voltmeter.
Note the reading and set the output switch to OFF, adjust VR8 on the main pcb for the same reading on the internal meter.

Current

Set output switch to ON.
Set current limit control to maximum.
Set VR3 on the driver pcb fully clockwise.
Connect the DMM set to 20A range in series with an adjustable load to the O / P terminals.
Adjust the load for 5 to 6 Amp output current.
Adjust VR5 on the driver pcb so that the external and internal meters read the same.
Adjust the load and/or outputput voltage to give 7.1 Amps output current.
Fine adjust VR3 until the decimal points just start to flash. Check 7 Amps output can be achieved without de decimal points flashing.

Functional Description - 5V/4A Module
 (PL320QMT)

This is very similar to the linear section of the 5V 7A module. Refer to this section for the description.

Circuit Description-5V/4A

Power Supply - Mains

This consists of a full wave bridge rectifier feeding the reservoir capacitor C 1 . The full load secondary voltage is 11 V rms giving approximately 15 Volts off load and 12 V on full load.

Power Supply - Auxiliary

This consists of twin full wave rectified supplies from a 21 V centre tapped winding.
D10 and Q5 generate +7 V 5 and D9 the -5 V .
0 V of this supply is connected to the positive output at R32.

Voltage Control

IC1A buffers the voltage control pot and VR5 sets maximum output voltage of the unit. D8 is the reference which is nominally 2.45 V .
IC1B is a differential amplifier with a voltage gain of 13.3. For 6 V output this means the voltage at IC1A will be 450 mV . VR4 trims differential gain and effects voltage regulation. This can be set more accurately by generating a few hundred millivolts between positive output and positive sense, see calibration section.

Current Control

IC1D is the error amplifier and compares the voltage on the wiper of VR3 with the voltage generated across the current sense resistor R32. When this limit is reached IC1D takes control. This turns on Q1 which lights the current limit LED.
To limit power dissipation in the series regulator the power supply has foldback current limiting. When the output falls below 3.5V IC1C reduces the output current by reducing the voltage on VR3.

Over Voltage Protection

When the voltage on the output terminals exceeds $7 \mathrm{~V}, \operatorname{SCR} 1$ is fired crowbaring the output. When the output switch is turned off, Q4 is turned on, which turns the series regulator off, which allows SCR1 to turn off.

Calibration - 5V/4A

Equipment Required

A 5.5 digit multimeter.
A small switch, 560 Ohm resistor and a diode.

VOLTAGE - Differential Gain

Remove the link between + O/P and + sense only and fit a diode, cathode to + sense and anode to + O/P. Connect the small switch across the diode. Connect the 560 Ohm resistor between O/P and + sense. Connect the DVM, set to 20 V range, to the sense terminals.

Close the switch.
Set the DC output switch on.
Set the output voltage to approximately 5 V .
Note the reading.
Open the small switch and adjust VR4 for the same reading $\pm 0.5 \mathrm{mV}$.
Close and open the small switch and check the reading.

VOLTAGE - Output

Remove the switch and resistor and refit the link between $\pm \mathrm{O} / \mathrm{P}$ and + sense.
Set the voltage control to maximum and adjust VR5 for 6.0 V to 6.05 V output.

CURRENT

Set current limit to maximum.
Connect a load of 4.1A and adjust VR2 until the current limit LED just comes on; check the LED is off at 4A.

Circuit Description - 5V/1.5A (PL310QMT)

An extra winding on the master output transformer provides approximately 8 V rms off load. D 1 to D4 form a bridge rectifier and C1 and C2 the reservoir capacitor.
IC1 is a fixed 5V three terminal low drop out regulator, D5 and D6 provide protection.
No calibration is required, see Technical Specification section for performance figure.

Parts List

```
PCB ASSY - MAIN - PL310/310QMD/310QMT (44115-0440)
PCB ASSY - MAIN - PL320/320QMD/320QMT (44115-0400)
PCB ASSY - MAIN - PL330/330QMD/330QMT (44115-0600) - COMMON PARTS
PCB ASSY - MAIN - PL154 (44115-0700)
PCB ASSY - MASTER - PL330QMD/330QMT (44115-0590)
```

Part Number	Description	Position
10300-0313	PAD P/E S/AD $12 \times 15 \mathrm{MM}$	FOR R51
22225-0220	SWITCH PUSH/PUSH SPPH11060A	DAMPING
22573-0063	HEADER 16 WAY STR SIL (8.4MM)	FOR DISPLAYS
22573-0205	HEADER 5 WAY STRAIGHT .156P	PJ3
22573-0210	HEADER 10 WAY STRAIGHT .156P	PJ1
23185-0220	RES 22RJ W25 CF RD25S B/R	R5
23185-0270	RES 27RJ W25 CF RD25S B/R	R10-17 INC
23185-1470	RES 470RJ W25 CF RD25S B/R	R42
23185-2100	RES 1K0J W25 CF RD25S B/R	R43
23185-2180	RES 1K8J W25 CF RD25S B/R	R18
23185-2470	RES 4K7J W25 CF RD25S B/R	R1,34,40,41,64,69
23185-3100	RES 10KJ W25 CF RD25S B/R	R25,33,45,46
23185-3330	RES 33KJ W25 CF RD25S B/R	R9,66,67
23185-3470	RES 47KJ W25 CF RD25S B/R	R2,3,75
23185-4100	RES 100KJ W25 CF RD25S B/R	R6,24,62,65,70
23185-4220	RES 220KJ W25 CF RD25S B/R	R7,8,39
23185-6100	RES 10MJ W25 CF RD25S B/R	R26,44
23202-1330	RES 330RF W25 MF 50PPM	R52
23202-2105	RES 1K05F W25 MF 50PPM	R48
23202-2845	RES 8K45F W25 MF 50PPM	R54
23202-3143	RES 14K3F W25 MF 50PPM	R37
23202-3150	RES 15K0F W25 MF 50PPM	R32,36
23202-3180	RES 18K0F W25 MF 50PPM	R28
23202-3560	RES 56K0F W25 MF 50PPM	R31
23202-4200	RES 200KF W25 MF 50PPM	R35,38
23202-5100	RES 1M00F W25 MF 50PPM	R55
23284-0060	RES 2K2J 2W5 WW	R60,61
23347-0140	POT 10K LIN VO12L-PV25F-B10K	VR1,2
23347-0150	POT 10K LOG VO12L-PV25F-15A10K	VR5
23377-2470	RES PS/H 4K7 CF 10MM	VR3
23377-4100	RES PS/H 100K CF 10MM	VR8
23379-1100	RES PS/H 100R Cermet 10 mm	VR7

PCB ASSY - MAIN - PL310/310QMD/310QMT - 44115-0440)		
PCB ASSY - MAIN - PL320/320QMD/320QMT - 44115-0400)		
PCB ASSY - MAIN - PL330/330QMD/330QMT - 44115-0600) - COMMON PARTS		
PCB ASSY - MAIN - PL154		
PCB ASSY - MASTER - PL330QMD/330QMT - 44115-0590)		
Part Number	Description	Position
23379-2100	RES PS/H 1K0 Cermet 10mm	VR6
23427-0329	CAP 47PG 63V CER N150 P5	C15,17
23427-0334	CAP 470PK 100V MED K P5	C36
23557-0611	CAP 47U 10V ELEC RE2 P2	C7
23557-0612	CAP 1U0 50V ELEC RE2 P2	C18,39
23557-0647	CAP 10U 35V ELEC RE2 P2	C25,26,38
23557-0665	CAP 2U2 50V ELEC RE2 P2	C16
23557-0668	CAP 220U 10V ELEC RE2 P2.5	C37
23620-0246	CAP 100NK 63V P/E P5	C2,6,9,12,27,28,29
23620-0249	CAP 330NK 63V P/E P5	C1,5,10,11
23620-0256	CAP 1U0K 63V P/E P5	C3
23620-9007	CAP 10NK 100V P/E P5	C13,14
23685-0007	CAP 100NK 160V P/P P10	C4
25021-0901	DIO 1N4148 B/R	D1-4,7,25
25061-9503	DISPLAY - 4 DIGIT LED	DISP1,2
25341-0214	TRAN PNP ZTX214L/BC559	Q6
25380-0229	TRAN NPN BC549	Q8
27106-0506	IC LM324N	IC7
27153-0030	IC ICL7109B	IC2
27161-0120	IC V/REF W/DIO ZN404 2.45V	D6
27164-0506	IC ULN-2803A	IC6
27226-0520	IC 4052B	IC3
27231-2730	IC 74HC273	IC5
27234-5730	IC 74AC573	IC4,9
27250-2000	IC MCU8 PIC16C55XT-P	IC1
28502-0010	RESONATOR CER 4MHZ	XL1
35555-2100	PCB - MAIN - PL	

a. PCB ASSY - MAIN - PL310/310QMD/310QMT)
b. PCB ASSY - MAIN - PL320/320QMD/320QMT)
c. PCB ASSY - MAIN - PL330/330QMD/330QMT) - UNIQUE PARTS
d. PCB ASSY - MAIN - PL154
e. PCB ASSY - MASTER - PL330QMD/330QMT)

Part Number Description
23185-0000
23185-1100
23185-1150
23185-4470
23185-5180
23202-3100
23202-3300
23202-3820
23202-3220
23202-3105
23202-2680
23202-2536
23202-2715
23202-3100
23202-3154
23202-3470
23202-4205
23202-4226
23206-2220
23207-2100
23286-0010
23286-0030
23377-1470
23377-2100
23377-2100
23377-2220
23379-2220
23379-2470
23557-0610
23557-0666
RES ZERO OHM

RES 100RJ W25CF RD25S B/R RES 150RJ W25CF RD25S B/R RES 470KJ W25CF RD25S B/R RES1M8J W25CF RD25S B/R RES 10K0F W25 MF 50PPM RES 30K0F W25 MF 50PPM RES 8K20F W25 MF 50PPM RES 22K0F W25 MF 50PPM RES 10K5F W25 MF 50PPM RES 6K08F W25 MF 50PPM RES 5K36F W25 MF 50PPM RES 7K15F W25 MF 50PPM RES 10K0F W25 MF 50PPM RES 15K4F W25 MF 50PPM RES 47F0F W25 MF 50PPM RES 205KF W25 MF 50PPM RES 226KF W25 MF 50PPM RES2K2F W60 MF 50PPM MRS25 RES 1K00F 1W MF 250PPM RES 0R1J 10W WW ALUMINIUM RES 0R1J 15W WW ALUMINIUM RES PS/H 470R CF 10MM RES PS/H1K0 CF 10MM RES PS/H1K0 CF 10MM RES PS/H2K2 CF 10MM RES PS/H2K2 CERMET 10MM RES PS/H4K7 CERMET 10MM CAP 100U 50V ELEC RE2 P3.5 CAP 47U 63V ELEC RE2 P3.5

Position
LK1,3,4,5 a,b,c,d
R53 a,b,d
R53 c,e
R29 a,b,c,e
R29 d
R30 a,b,c
R4 a,b,c,d
R30 d
R47 a
R47 b
R47 c,e
R47 d
R55 e
R30 e
R27 e
R4 e
R71 e
R27 a,b,c,d
R49 a,b,d,e
R49 c
R51 a,b,c,d
R51 e
VR4 d
VR4,9 b,c,e
VR9 d
VR4,9 a
VR11 e
VR10 e
C20 c
C20 a,b,d,e

PCB ASSY - DRIVER - PL310/310QMD/310QMT (44115-0450))
PCB ASSY - DRIVER - PL320/320QMD/320QMT (44115-0410)) - COMMON PARTS
PCB ASSY - DRIVER - PL330/330QMD/330QMT (44115-0610))
PCB ASSY - DRIVER - PL154 (44115-0710))

Part Number	Description	Position
$20037-0301$	WASHER M3 SHK/PROOF I/T ZPST	FOR IC8 \& Q1
$20210-0101$	NUT M3 ZPST	FOR IC8 \& Q1
$20234-0011$	SCREW M3 X 10 PNHDPZ NPST	FOR IC8 \& Q1
$20611-0003$	BUSH POLYESTER TO220 J22-5006	FOR IC8 \& Q1
$20613-0006$	WASHER (SIL-PAD) TO220	FOR IC8 \& Q1
$20670-0180$	HEATSINK PCB MTG 63MM HIGH	FOR IC8 \& Q1
$22573-0210$	HEADER 10 WAY STRAIGHT .156P	
$23179-3100$	RES 10KJ W5 CF	R57
$23185-0000$	RES ZERO OHM	LK2
$23185-0470$	RES 47RJ W25 CF RD25S B/R	R19
$23185-1100$	RES 100RJ W25 CF RD25S B/R	R50
$23185-1470$	RES 470RJ W25 CF RD25S B/R	R59
$23185-2100$	RES 1K0J W25 CF RD25S B/R	R58
$23557-0647$	CAP 10U 35V ELEC RE2 P2	C23,24
$23557-0664$	CAP 1000U 35V ELEC RE2 P5	C21
$23557-0667$	CAP 220U 25V ELEC RE2 P3.5	C22
$25115-0907$	DIO 1N4002 B/R	D8,12,13,14,15
$25130-0231$	DIO ZEN 8V2 W4	D10
$25130-0903$	DIO ZEN 5V1 W4	D11
$25382-0610 ~$	TRAN NPN DARLINGTON TIP120	Q1
$25383-0505 ~$	TRAN NPN BC338	Q7
$27160-0009$	IC V/REG 7805 TO220	IC8

a) PCB ASSY - DRIVER - PL310/310QMD/310QMT (UNIQUE PARTS)
b) PCB ASSY - DRIVER - PL320/320QMD/320QMT " "
c) PCB ASSY - DRIVER - PL330/330QMD/330QMT

11
d) PCB ASSY - DRIVER - PL154

Part Number	Description	Position	
$22573-0205$	HEADER 5 WAY STRAIGHT .156P	PJ6	a, b
$22573-0206$	HEADER 6 WAY STRAIGHT .156P	PJ7	$\mathrm{a}, \mathrm{b}, \mathrm{d}$
$23185-0000$	RES ZERO OHM	R20	a
$23185-0000$	RES ZERO OHM	LK1	d
$23185-0470$	RES 47RJ W25 CF RD25S B/R	R56	a, b
$23206-0010$	RES 1R0F W60 MF 100PPM	R20-23,73,74 c	
$23215-9302$	RES 0R47K W5 MF	R20,21,22,23 d	
$23215-9303$	RES 1R 1/2W. 10\% MF	R20,21,22,23 b	
$23557-0654$	CAP 1000U 63V ELEC RE2 P7.5	C31,32	$\mathrm{a}, \mathrm{b}, \mathrm{c}$
$23557-0654$	CAP 1000U 63V ELEC RE2 P7.5	C33,34	b
$23557-0654$	CAP 1000U 63V ELEC RE2 P7.5	C30,33,34,40 c	
$23557-0669$	CAP 2200U 35V ELEC RE2 P7.5	C31,32,33,34 d	
$23685-0008$	CAP 100NK 160V P/P MKP10	C30	a,b
$25115-9001$	DIO 1N4003	D18,20,22,24 a	
$25117-0020$	DIO 1N5401	D16	a,b,c
$25117-0020$	DIO 1N5401	D2,17,19,21	b
$35515-1220$	PCB - DRIVER - PL		a,b,d
$35515-1310$	PCB - DRIVER - PL		c

PCB ASSY - 5V/7A MAIN - PL330QMT (44115-0650)		
Part Number	Description	Position
22573-0063	HEADER 16 WAY STR SIL (8.4MM)	FOR DISPLAY
23185-0220	RES 22RJ W25 CF RD25S B/R	R64
23185-0560	RES 56RJ W25 CF RD25S B/R	R10,11,12,13,14, 15,16,17
23185-1100	RES 100RJ W25 CF RD25S B/R	R48
23185-2100	RES 1K0J W25 CF RD25S B/R	R28
23185-2470	RES 4K7J W25 CF RD25S B/R	R27,34,42
23185-3100	RES 10KJ W25 CF RD25S B/R	R22,26,66
23185-3330	RES 33KJ W25 CF RD25S B/R	R5,6,7
23185-3470	RES 47KJ W25 CF RD25S B/R	R1,2,3
23185-4100	RES 100KJ W25 CF RD25S B/R	R65
23185-4150	RES 150KJ W25 CF RD25S B/R	R49
23185-4220	RES 220KJ W25 CF RD25S B/R	R8,9
23187-4300	RES 300KJ W25 CF RD25S B/R	R50
23187-4620	RES 620KJ W25 CF RD25S B/R	R51
23202-2100	RES 1K00F W25 MF 50PPM	R32
23202-2174	RES 1K74F W25 MF 50PPM	R33
23202-2845	RES 8K45F W25 MF 50PPM	R54
23202-3110	RES 11K0F W25 MF 50PPM	R31
23202-3143	RES 14K3F W25 MF 50PPM	R37
23202-3150	RES 15K0F W25 MF 50PPM	R36
23202-3180	RES 18K0F W25 MF 50PPM	R30
23202-3300	RES 30K0F W25 MF 50PPM	R4
23202-3866	RES 86K6F W25 MF 50PPM	R61
23202-4200	RES 200KF W25 MF 50PPM	R35,38
23202-4226	RES 226KF W25 MF 50PPM	R29
23202-5100	RES 1M00F W25 MF 50PPM	R55
23347-0140	POT 10K LIN VO12L-PV25F-B10K	VR1,2
23377-2100	RES PS/H 1K0 CF 10MM	VR4
23379-2100	RES PS/H 1K0 Cermet 10 mm skel	VR6
23379-2220	RES PS/H 2K2 Cermet 10 mm skel	VR7
23427-9247	CAP 330PG 100V CER N150 P2.5T	C15
23557-0611	CAP 47U 10V ELEC RE2 P2	C7,8
23557-0612	CAP 1U0 50V ELEC RE2 P2	C11
23557-0647	CAP 10U 35V ELEC RE2 P2	C25,26
23557-0668	CAP 220 U 10 V ELEC RE2 P2.5	C37
23620-0246	CAP 100NK 63V P/E P5	C2,6,27,28,29,38
23620-0249	CAP 330NK 63V P/E P5	C1,5,9,10

PCB ASSY - 5V/7A MAIN - PL330QMT (44115-0650) continued/...		
Part Number	Description	Position
23620-0256	CAP 1U0K 63V P/E P5	C3
23620-9007	CAP 10NK 100V P/E P5	C13,14
23685-0007	CAP 100NK 160V P/P MKP4 P10	C4
25021-0901	DIO 1N4148 B/R	D1,2,3,5
25061-9503	DISPLAY - 4 DIGIT LED	DISP1
25380-0229	TRAN NPN BC549	Q1,4
27106-0513	IC LM358N	IC7
27153-0030	IC ICL7109B	IC2
27161-0120	IC V/REF W/DIO ZN404 2.45V	D9
27164-0507	IC ULN-2003A	IC3
27230-0530	IC 74HC4053	IC6
27231-2730	IC 74HC273	IC5
27234-5730	IC 74AC573	IC4
27250-2000	IC MCU8 PIC16C55XT-P	IC1
28502-0010	RESONATOR CER 4MHZ	XL1
35555-2160	PCB - MAIN - PL 5V/7A	
43171-1310	CONN ASSY DRIVER - PL 5V/7A	PJ1
PCB ASSY - 5V/7A DRIVER - PL330QMT (44115-0660)		
Part Number	Description	Position
10300-0313	PAD P/E S/AD $12 \times 15 \mathrm{MM}$	FOR R62
20030-0263	WASHER M3 ZPST	FOR IC8/Q2
20038-9501	WASHER M3 Spring	FOR IC8/Q2
20210-0101	NUT M3 ZPST	FOR IC8/Q2
20234-0011	SCREW M3 X 10 PNHDPZ NPST	FOR IC8/Q2
20611-0003	BUSH POLYESTER TO220 J22-5006	FOR IC8
20613-0006	WASHER (SIL-PAD) TO220	FOR IC8
20670-0200	HEATSINK PCB MTG 50MM HIGH	HS1
22300-0211	FUSEHOLDER PCB MOUNTING	FOR FS1
22315-0240	FUSE 6.3A 20MM FB GLASS	FS1
22573-0203	HEADER 3 WAY STRAIGHT .156P	PJ4
22573-0205	HEADER 5 WAY STRAIGHT .156P	PJ6
22573-0207	HEADER 7 WAY STRAIGHT .156P	PJ3
22575-0065	HEADER 20 WAY (2X10) STR SKELTN	PJ5
23185-0000	RES ZERO OHM	LK1-9
23185-0470	RES 47RJ W25 CF RD25S B/R	R19
23185-1220	RES 220RJ W25 CF RD25S B/R	R21,23,47,63

PCB ASSY - 5V/7A DRIVER - PL330QMT (44115-0660) continued/...		
Part No.	Description	Position
23185-1330	RES 330RJ W25 CF RD25S B/R	R52
23185-1470	RES 470RJ W25 CF RD25S B/R	R59
23185-2100	RES 1K0J W25 CF RD25S B/R	R18,58
23185-2150	RES 1K5J W25 CF RD25S B/R	R56
23185-2180	RES 1K8J W25 CF RD25S B/R	R20
23185-2220	RES 2K2J W25 CF RD25S B/R	R24
23185-2470	RES 4K7J W25 CF RD25S B/R	R39,40,41
23185-3100	RES 10KJ W25 CF RD25S B/R	R45,70
23185-3470	RES 47KJ W25 CF RD25S B/R	R43,44,46,69
23187-2620	RES 6K2J W25 CF RD25S B/R	R53
23202-2510	RES 5K10F W 25 MF	R68
23202-3430	RES 43K0F W25 MF	R67
23274-0045	RES 100RJ 2W5 WW	R57,60
23286-0020	RES 0R05J 10W WW ALUM HSD	R62
23377-2100	RES PS/H 1KO CF 10MM	VR8
23377-2220	RES PS/H 2K2 CF 10MM	VR3
23379-1100	RES PS/H 100R Cermet 10 mm skel	VR5
23428-0470	CAP 47PG 100V CER N150 P2.5T	C17
23557-0612	CAP 1UO 50V ELEC RE2 P2	C19
23557-0647	CAP 10U 35V ELEC RE2 P2	C16,23,24
23557-0664	CAP 1000U 35V ELEC RE2 P5	C21
23557-0667	CAP 220U 25V ELEC RE2 P3.5	C20,22
23557-0677	CAP 4700U 25V ELEC RAD P7.5	C30,31,32,33,34
23620-0246	CAP 100NK 63V P/E P5	C18,36
23620-9007	CAP 10NK 100V P/E P5	C12
25021-0901	DIO 1N4148 B/R	D4
25115-0907	DIO 1N4002 B/R	D12,13,14,15
25117-0020	DIO 1N5401	D6
25130-0231	DIO ZEN 8V2 W4	D10
25130-0903	DIO ZEN 5V1 W4	D11
25130-0913	DIO ZEN 6V8 W4	D7
25341-0214	TRAN PNP ZTX214L/BC559	Q5,6
25383-0505	TRAN NPN BC338	Q3,7
25386-9300	TRAN TIP31A	Q2
25801-9501	Thyristor TAG 666-100	SCR1

PCB ASSY - 5V/7A DRIVER - PL330QMT (44115-0660) continued/...

Part No.	Description	Position
$27106-0513$	IC LM358N	IC9
$27160-0009$	IC V/REG 7805 TO220	IC8
$27230-0530$	IC 74HC4053	IC10
$35515-1350$	PCB - DRIVER - PL 5V/7A	

PCB ASSY - 5V - PL310QMT (44115-0670)

Part Number	Description	Position
$20030-0263$	WASHER M3 ZPST	FOR IC1
$20038-9501$	WASHER M3 Spring	FOR IC1
$20210-0101$	NUT M3 ZPST	FOR IC1
$20234-0012$	SCREW M3 X 8 PNHDPZ ZPST	FOR IC1
$20670-0200$	HEATSINK PCB MTG 50MM HIGH	FOR IC1
$22573-0202$	HEADER 2 WAY STRAIGHT .156P	
$23185-2100$	RES 1K0J W25 CF RD25S B/R	R1
$23424-0463$	CAP 10NZ 1KV CER P5	C4
$23557-0658$	CAP 100U 25V ELEC RE2 P2.5	C3
$23557-9122$	CAP 4700U 16V ELEC RE2 P7.5	C1,2
$25115-0907$	DIO 1N4002 B/R	D5
$25117-0020$	DIO 1N5401	D1,2,3,4,6
$27160-0450$	IC V/REG L4940V5 T0220	IC1
$35515-1360$	PCB - 5V - PL310QMT	

PCB ASSY - 5V - PL320QMT (44115-0680)
PartNumber Description Position

20030-0263 WASHER M3 ZPST FOR SK1
20038-9501 WASHER M3 Spring FOR SK1
20210-0101 NUT M3 ZPST FOR SK1
20234-0011 SCREW M3 X 10 PNHDPZ NPST FOR SK1
20611-0003 BUSH POLYESTER TO220 FOR SK1
20613-0006 WASHER (SIL-PAD) TO220 FOR SK1
20670-0130 HEATSINK PCB MTG 25MM HIGH SK1
22300-0211 FUSEHOLDER PCB MOUNTING FOR FS1
22316-0201 FUSE 5A FB LBC 20MM GLASS FS1
22454-0041 RECEPT RED FVDDF1.25-250 (2)
22573-0203 HEADER 3 WAY STRAIGHT .156P PJ1,2
22573-0205 HEADER 5 WAY STRAIGHT .156P PJ3
23185-0000 RES ZERO OHM LINKS (9)

PCB ASSY - 5V - PL320QMT (44115-0680) continued/...		
Part No.	Description	Position
23185-0470	RES 47RJ W25 CF RD25S B/R R19	
23185-1100	RES 100RJ W25 CF RD25S B/R R15	
23185-1220	RES 220RJ W25 CF RD25S B/R R9,17,20,37	
23185-1470	RES 470RJ W25 CF RD25S B/R R5	
23185-2100	RES 1K0J W25 CF RD25S B/R R2,4,6,18	
23185-2150	RES 1K5J W25 CF RD25S B/R R33	
23185-2180	RES 1K8J W25 CF RD25S B/R R1	
23185-2220	RES 2K2J W25 CF RD25S B/R R27	
23185-2470	RES 4K7J W25 CF RD25S B/R R7, $8,25,26$	
23185-3100	RES 10KJ W25 CF RD25S B/R 13,16,28-30,38	
23185-4150	RES 150KJ W25 CF RD25S B/R R34	
23202-2100	RES 1K00F W25 MF 50PPM R10	
23202-3150	RES 15K0F W25 MF 50PPM R21	
23202-2174	RES 1K74F W25 MF 50PPM	R12
23202-3110	RES 11K0F W25 MF 50PPM	R3
23202-3143	RES 14K3F W25 MF 50PPM	R22
23202-3453	RES 45K3F W25 MF 50PPM	R14
23202-4200	RES 200KF W25 MF 50PPM	R23,24,36
23202-4360	RES 360KF W25 MF 50PPM	R35
23274-0045	RES 100RJ 2W5 WW	R11,31
23320-0003	RES R10-FERRYALLOY	R32
23347-0140	POT 10K LIN VO12L-PV25F-B10K	VR1,3
23377-2100	RES PS/H 1K0 CF 10MM	VR4
23377-3100	RES PS/H 10K CF 10MM	VR2
23379-2220	RES PS/H 2K2 Cermet 10 mm skel	VR5
23427-9247	CAP 330PG 100V CER N750 P2.5T	C11
23428-0470	CAP 47PG 100V CER N150 P2.5T	C12
23557-0612	CAP 1U0 50V ELEC RE2 P2	C8
23557-0647	CAP 10U 35V ELEC RE2 P2	C6,7
23557-0664	CAP 1000U 35V ELEC RE2 P5	C4
23557-0667	CAP 220U 25V ELEC RE2 P3.5	C5,9
23557-0677	CAP 4700U 25 V ELEC RAD P7.5	C1,2,3
23620-9007	CAP 10NK 100V P/E P5	C23,14
25021-0901	DIO 1N4148 B/R	D1,2,3,5,6,7
25061-0200	LED - T1 ROUND (3mm) - RED	LED1
25115-0907	DIO 1N4002 B/R	D11,12,13,14

PCB ASSY - 5V - PL320QMT (44115-0680) continued/...

Part No.	Description	Position
$25130-0231$	DIO ZEN 8V2 W4	D10
$25130-0903$	DIO ZEN 5V1 W4	D9
$25130-0913$	DIO ZEN 6V8 W4	D4
$25341-0214$	TRAN PNP ZTX214L/BC559	Q1,4
$25380-0229$	TRAN NPN BC549	Q7
$25383-0505$	TRAN NPN BC338	Q3,5
$25386-9300$	TRAN TIP31A	Q2
$25801-9501$	Thyristor TAG 666-100	SCR1
$27106-0506$	IC LM324N 14 PIN	IC1
$27161-0120$	IC V/REF W/DIO ZN404 2.45V	D8
$35515-1370$	PCB - 5V - PL320QMT	

PCB ASSY SWITCHBANK 10MM PL310QMD/QMT (44115-0640))
PCB ASSY SWITCHBANK 10MM PL320QMD/QMT (44115-0630)) - COMMON PARTS PCB ASSY SWITCHBANK 10MM PL330QMD/QMT (44115-0620))

Part Number
20010-0205
20040-9501
22225-0750
22573-0204
22575-0204
22575-0205
22575-0207
23185-0000
23202-4180
23379-3100
23620-0246
35515-1340
37113-0170

Description
POP RIVET TAP/D/33BS
NUT No. 4 Angle
SWITCHBANK
HEADER 4 WAY STRAIGHT .156P
PJ8
SKT 4W . 156 20AWG (Yellow)IDT
SKT 5W . 156 20AWG (Yellow)IDT
SKT 7W . 156 20AWG (Yellow)IDT
RES ZERO OHM
LK1
RES 180KF W25 MF 50PPM R3
RES PS/H 10K Cermet 10 mm skel
VR1
CAP 100NK 63V P/E P5 C1

PCB - SWITCHBANK - PL (10mm)
BUTTON, SWITCHBANKS, MID-GREY
a) PCB ASSY SW/B 10MM PL310QMD/QMT (UNIQUE PARTS)
b) PCB ASSY SW/B 10MM PL320QMD/QMT " "
c) PCB ASSY SW/B 10MM PL330QMD/QMT " "

Part Number	Description	Position_
23202-2316	RES 3K16F W25 MF 50PPM	R4 c
23202-2536	RES 5K36F W25 MF 50PPM	R4
23202-3105	RES 10K5F W25 MF 50PPM	R4
23206-0010	RES 1R0F W60 MF 100PPM MRS25	R1A, 1B, 2A, 2B
23206-0010	RES 1R0F W60 MF 100PPM MRS25	R1A-1D,2A-2D
23206-0010	RES 1R0F W60 MF 100PPM MRS25	R1A-1F,2A-2F
23377-1470	RES PS/H 470R CF 10MM	VR2 b,c
23377-2100	RES PS/H 1K0 CF 10MM	VR2 a
HEATSINK AS HEATSINK AS HEATSINK AS HEATSINK AS	PL310/310QMD/310QMT (46115-0450) PL320/154/320QMD/320QMT (46115-0440) PL330/330QMD/330QMT (46115-0470) 5V/7A (46115-0510)	```)```
HEATSINK AS	PL 5V/4A (46115-0500))
Part Number	Description	Position
10232-0306	SLEEVE H50 X 20MML BROWN	
20030-0240	WASHER 4BA ZPST	
20038-9503	WASHER M3.5 SPRING	
20100-9201	NUT 4BA Full - Steel	
20134-9007	SCREW 4BA x 1/2" Pozi Pan	
20611-0007	TRANSISTOR MOUNT - T03	
20613-0014	WASHER (SIL-PAD) TO3	
22451-0200	SOLDER TAG 4BA	
25386-9201	TRAN 2N3055	

a) HEATSINK ASSY - PL310/310QMD/310QMT (UNIQUE PARTS)
b) HEATSINK ASSY - PL320/154/320QMD/320QMT
c) HEATSINK ASSY - PL330/330QMD/330QMT
d) HEATSINK ASSY - 5V/7A
e) HEATSINK ASSY - PL 5V/4A

Part Number	Description	
$20670-0250$	HEATSINK 11DN01250C2SX	d, e
$20670-9001$	HEATSINK KP314	$\mathrm{a}, \mathrm{b}, \mathrm{c}$
$22575-0203$	SKT 3W . 156 20AWG (Yellow)IDT	e
$22575-0205$	SKT 5W .156 20AWG (Yellow)IDT	d
$22575-0206$	SKT 6W .156 20AWG (Yellow)IDT	a, b
$22575-0208$	SKT 8W .156 20AWG (Yellow)IDT	c
$23274-0060$	RES 0R22K 4W WW KH206-044	d

FRONT PANEL ASSY - PL310/320/330/154 \quad (46115-0600)
FRONT PANEL ASSY - PL310QMD/320QMD/330QMD (46115-0490)

FRONT PANEL ASSY - PL310QMT (46115-0670) - COMMON PARTS
FRONT PANEL ASSY - PL320QMT
FRONT PANEL ASSY - PL330QMT
(46115-0780)
(46115-0680)

Part Number
20030-0240
20037-0247
20038-9503
20062-9301
20062-9308
20134-9005
20213-0010
20661-0257
20661-0604
22219-0060
22219-0080
22571-0670
22571-0680
22571-0690
22571-0691
22575-0205
25117-0020
35331-0080
35515-1210

Description
WASHER 4BA ZPST
WASHER 4BA SHK/PROOF I/T ZPST
WASHER M3.5 SPRING
SCREW No.4x3/8" Pozi. Pan
SCREW No.6x3/8" Pozi Pan
SCREW 4BA x 1/4" Pozi Pan
CAPTIVE NUT SNU-1219-17-00
SPACER Hex 4BA x 1/2" NPBR
SPACER, PCB Support 1/2" Nyl
SWITCH PADDLE DPST SOLDER LUGS
SWITCH PADDLE DPDT PCB MTG
TERMINAL INSULATED RED TP2
TERMINAL INSULATED BLACK TP2
TERMINAL INSULATED GREEN TP2
WASHER ALUMINIUM FOR TP2E TERM
SKT 5W . 156 20AWG (Yellow)IDT
DIO 1N5401
SHORTING BAR - PLATED
a) FRONT PANEL ASSY - PL310/320/330/154
b) FRONT PANEL ASSY - PL310QMD/320QMD/330QMD
c) FRONT PANEL ASSY - PL310QMT
d) FRONT PANEL ASSY - PL320QMT
e) FRONT PANEL ASSY - PL330QMT

Part Number
20030-0263
20038-9501
20210-0101
20234-0042
20661-0246
22451-0200
22573-0205
22575-0204

Description
WASHER M3
WASHER M3 SPRING
NUT M3
SCREW M3 X 30
SPACER ROUND 9/64"ID11/16"L
SOLDER TAG 4BA
HEADER 5 WAY STRAIGHT .156P
SKT 4W . 156 20AWG (Yellow)IDT b

Position
TERMINALS
TERMINAL GREEN
TERMINALS
SW PCB
PCB FIXING
TERMINALS

TERMINALS
MAIN PCB MTG
MAINS ON/OFF
DC ON/OFF

TERMINAL PCB
(UNIQUE PARTS)
" "
" "
" "
" "
Position
PCB 5V c
TERMINAL PCB a,b,c
PJ2A c
a) FRONT PANEL ASSY - PL310/320/330/154
(UNIQUE PARTS)
b) FRONT PANEL ASSY - PL310QMD/320QMD/330QMD
c) FRONT PANEL ASSY - PL310QMT
d) FRONT PANEL ASSY - PL320QMT
e) FRONT PANEL ASSY - PL330QMT

Part No.
22575-0207
23424-0454
23620-0246
33331-5000
33331-5040
33331-5050

33331-5060

33331-5070
33331-5100
33331-5110
33331-5120

33331-5130
33331-5300
33331-5310
33331-5410
33331-5420
35515-1320

Description

SKT 7W . 156 20AWG (Yellow)IDT d,e CAP 10NZ 1KV CER P10 CAP 100NK 63V 0P/E P5 d,e FRONT PANEL - PL Single a OVERLAY FRONT PANEL - PL a OVERLAY FRONT PANEL - PL310 a

OR
OVERLAY FRONT PANEL - PL154 a OR

OVERLAY FRONT PANEL - PL330 a FRONT PANEL - PLQMD b,c OVERLAY FRONT PANEL - PLQMD b OVERLAY FRONT PANEL - PL310QMD b OR

OVERLAY FRONT PANEL - PL330QMD b FRONT PANEL - PLQMT d,e OVERLAY FRONT PANEL - PL330QMT e OVERLAY FRONT PANEL - PL310QMT c OVERLAY FRONT PANEL - PL320QMT d PCB TERMINAL UNIVERSAL d,e

Position

TERMINAL PCB a,b,c
continued/...

CHASSIS ASSY - PL310 (46115-0550)			
CHASSIS ASSY - PL320 (46115-0580)			
CHASSIS ASSY - PL330		(46115-0610)	
CHASSIS ASSY - PL154		(46115-0630)	
CHASSIS ASSY - PL310QMD (46115-0730)			
CHASSIS ASSY - PL320QMD (46115-0740)			
CHASSIS ASSY - PL330QMD (46115-0460)			
CHASSIS ASSY - PL310QMT (46115-0660)			
CHASSIS ASSY - PL330QMD (46115-0790)			
CHASSIS ASSY - PL330QMD (46115-0770)			
Part Number	Descrip	tion	Position
10232-0304	SLEEV	H30 X 20MML BLACK	FUSEHOLDER, MAINS SWITCH, TRANSFORMER
10232-0305	SLEEV	H20 X 20MML BLACK	TRANSFORMER
20030-0240	WASHER	R 4BA ZPST	HEATSINK
20037-0304	WASHER M4 SHK/PROOF I/T ZPST		
	CHASSIS/HEATSINK POST		
20037-0401	SOLDE	TAG SHAKEPROOF - 4BA	
20038-9502	WASHER M4 SPRING		
	COVER, EARTH, BR1,2,3		
20040-9401	NUT N	6 FLAT	FEET
20062-9303	SCREW	NO 6×0.5 " PNHDPZ ST/AB	TRANSFORMER/CHASSIS
20062-9308	SCREW	No.6x3/8" POZI PAN	DRIVER/SPACERS
20210-0102	NUT M4 ZPST		
	EARTH, HEATSINKS, BR1,2,3		
20213-0010	CAPTIV	E NUT SNU-1219-17-00	CHASSIS, TRANSFORMER
20234-0014	SCREW	M4 X 20 PNHDPZ ZPST	BR1,2,3
20234-0023	SCREW M4 X 8 PNHDPZ ZPST		
	COVER, EARTH, HEATSINK		
20234-0029	SCREV	M4 X 12 PNHDPZ ZPST	HEATSINK
20611-9305	TRAN	OUNTING BUSH SK18-4-1	HEATSINK
20661-0242	SPACE	HEX M4 x 25 NPBR	HEATSINK
20661-0259	SPACER	RND 3/8"ODx.175"ID NYL	HEATSINK
20661-0605	SPACE	, PCB SUPPORT 7/8" NYL	DRIVER PCB MOUNTING
20661-9302	SPACE	HEX STUD M4 x 25 ZPST	HEATSINK
22300-9301	FUSEH	LDER PANEL MOUNTING	
22443-0003	GROM	ET - PV93	
22451-0041	RECEP	ACLE RED	BR1,2,3
22448-0220	BUSH	TRAIN RELIEF SR-5N-4	
22573-0204	HEADE	4 WAY STRAIGHT	PJ4 DRIVER

CHASSIS ASSY - PL310 (46115-0550)			
CHASSIS ASSY - PL320		(46115-0580)	
CHASSIS ASSY - PL330		(46115-0610)	
CHASSIS ASSY - PL154		(46115-0630)	
CHASSIS ASSY - PL310QMD (46115-0730)			
CHASSIS ASSY - PL320QMD (46115-0740)			
CHASSIS ASSY - PL330QMD (46115-0460)			
CHASSIS ASSY - PL310QMT (46115-0660)			
CHASSIS ASSY - PL330QMD (46115-0790)			
CHASSIS ASSY - PL330QMD (46115-0770) continued/...			
Part No.	Descrip	tion	Position
22573-0205	HEADE	R 5 WAY STRAIGHT	PJ2A MAIN
	OR		
22573-0207	HEADE	R 7 WAY STRAIGHT	PJ2A MAIN
22575-0203	SKT 3W	. 156 20AWG (Yellow)IDT	TRANSFORMER
22575-0205	SKT 5W	. 156 20AWG (Yellow)IDT	TRANSFORMER
22575-0210	SKT 10w	W . 156 20AWG (Yellow)IDT	
25211-0300	RECTIF	IER BRIDGE 25 AMP 200V	BR1,2,3
31512-0450	COVER	HEATSINK - PL310/320/154	
31512-0400	COVER	HEATSINK - PL330	
31512-0360	$\begin{aligned} & \text { COVER } \\ & \text { PL310Q } \end{aligned}$	HEATSINK MD/310QMT/320QMT	
31512-0430	COVER	HEATSINK - PL330QMD	
31512-0510	$\begin{aligned} & \text { COVER } \\ & \text { PL330Q } \end{aligned}$	HEATSINK MD/330QMT/320QMT	
33536-3550	CHASS	S - PL SINGLE	
33536-3560	CHASS	S - PLQMD/310QMT	
33536-3580	CHASS	S - PL320QMT/330QMT	
37541-9010	LABEL	TRANSFORMER SHROUD	
22115-0190	TRANS	ORMER PL 5V/7A	
22115-0210	TRANS	ORMER PL330/330QMD/33	
22115-0230	TRANS	ORMER PL310QMT	
22115-0250	TRANS	ORMER PL320QMT	
43751-9010	TRANS	ORMER PL310/310QMD/31	
43751-9090	TRANS	ORMER PL320/320QMD/32	
43751-9100	TRANS	ORMER PL154	

PL310 - CASE PARTS (51000-0101)
PL320 - CASE PARTS (51000-0201)
PL330 - CASE PARTS (51000-0301)
PL154 - CASE PARTS (51000-0401)
PL310QMD - CASE PARTS (51000-0501)
PL320QMD - CASE PARTS (51000-0601)
PL330QMD - CASE PARTS (51000-0701)
PL310QMT - CASE PARTS (51000-0801)
PL320QMT - CASE PARTS (51000-1301)
PL330QMT - CASE PARTS (51000-0901)
Part Number Description

20037-0247 WASHER 4BA SHK/PROOF I/T ZPST
20062-9303
20062-9305
20062-9501
20630-9001
20630-9003
20653-0204
20657-0070
20657-0072
20662-9101
33536-3510
33536-3500
33536-3620
33536-3630
33536-3660
37113-0180
37522-0160
SCREW NO 6×0.5 PNHDPZ ST/AB
SCREW No.6x3/4" Pozi. Pan
SCREW No.6x3/4"Raised Poz.
Black Handle
Handle Clips
CABLE TIE
KNOB 21MM DA217 180 GREY 99
CAP BLK LINE C211 GREY 99
Instrument Foot
COVER - PL310QMD/310QMT/320QMD
COVER - PL330QMD
COVER - PL310/320/154
COVER - PL330
COVER - PL330QMT/320QMT
BUTTON, MID GREY ABS
LABEL SER NO - THURLBY-THANDAR

Position

LOWER CASE SCREWS
COVER/FRONT PANEL
FEET
HANDLE
(i) INSTRUCTION BOOK

Part Number	Description
$48511-0170$	INSTRUCTION BOOK - PL SERIES

(ii) MAINS CABLES

Part Number	Description	Type
10175-0110	MAINS LD 3 CORE 24/0.2MM	240 V
$22491-0200$	MAINS LD BARE ENDS/EURO PLUG	220 V
$22491-0210$	MAINS LD BARE ENDS/USA PLUG	$110 / 120 \mathrm{~V}$

(iii) FUSES

MODEL	240/220V	$110 / 120 \mathrm{~V}$
PL310/320/154 (Single)	$22315-9501$	$22315-9502$
PL330 (Single)	$22315-0230$	$22315-0241$
PL310QMD/QMT PL320QMD/QMT	$22315-9502$	$22315-9503$
PL330QMD	$22315-0241$	$22315-0244$
PL330QMT	$22315-9503$	$22315-0245$

(iv) POWER WARNING LABELS

MODEL	240/220V	110/120V
PL310/320/154 (Single)	$37559-0100 / 0110$	$37559-0130 / 0120$
PL330 (Single)	$37559-0380 / 0390$	$37559-0410 / 0400$
PL310QMD/QMT PL320QMD	$37559-0140 / 0150$	$37559-0170 / 0160$
PL320QMT	$37559-0420 / 0430$	$37559-0450 / 0440$
PL330QMD	$37559-0300 / 0310$	$37559-0330 / 0320$
PL330QMT	$37559-0340 / 0350$	$37559-0370 / 0360$

Driver

$\stackrel{\otimes}{\mid c}$	$\because \mid$	㫛		$\begin{array}{\|c} 3 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$		$\begin{gathered} E \\ \frac{E}{E} \\ \frac{5}{2} \end{gathered}$	喜
$\stackrel{\rightharpoonup}{n}$		6	景		$\frac{6}{2}$	等	景
		彩感			洶		m^{8}

$$
C_{\text {PJ4 } 1}^{-{ }^{01}}
$$

